Solutions for Exam Physics Laboratory 1: Data and error analysis 30 October 2013

Exercise 1 (4 points total)
a) $v=2718 \pm 2 \mathrm{~mm} / \mathrm{s}=2.718 \pm 0.002 \mathrm{~m} / \mathrm{s}$ (1 point)
b) $L=3.14000 \pm 0.00002 \mathrm{~km}=3140.00 \pm 0.02 \mathrm{~m}=314000 \pm 2 \mathrm{~cm}$ (1 point)
c) $C=4.7 \pm 0.5 \mathrm{mF}=(4.7 \pm 0.5) \cdot 10^{3} \mu \mathrm{~F}$ (1 point)
d) $R=68.00 \pm 0.03 \mathrm{M} \Omega$ (1 point)

Exercise 2 (5 points total)
$R=330 \Omega$ and $I=0.28 \mathrm{~A} \Rightarrow P=I^{2} R=25.872 \mathrm{~W}$ (intermediate result \rightarrow keep more decimals). (1 point)
$\Delta R / R=5 \%=0.05, \Delta I / I=0.01 / 0.28=0.0357 \Rightarrow$

$$
\begin{aligned}
\left(\frac{\Delta P}{P}\right)^{2} & =\left(\frac{\Delta\left\{I^{2}\right\}}{\left\{I^{2}\right\}}\right)^{2}+\left(\frac{\Delta R}{R}\right)^{2}=\left(2 \frac{\Delta I}{I}\right)^{2}+\left(\frac{\Delta R}{R}\right)^{2} \\
& =4\left(\frac{\Delta I}{I}\right)^{2}+\left(\frac{\Delta R}{R}\right)^{2}=0.00760204
\end{aligned}
$$

(2 points for correct formula)
$\Rightarrow \Delta P / P=0.0872 \approx 9 \% \Rightarrow \Delta P=2.2558 \approx 2.3 \mathrm{~W} .(1$ point $)$
$\Rightarrow P \pm \Delta P=26 \pm 3 \mathrm{~W}$. (1 point)
Exercise 3 (5 points total)

$$
\begin{aligned}
w_{1}=\frac{1}{s_{1}^{2}}=\frac{1}{0.5^{2}}=4 \text { and } w_{2}=\frac{1}{s_{2}^{2}}=\frac{1}{0.2^{2}}=25 \text { (1 point) } \\
L=\frac{w_{1} L_{1}+w_{2} L_{2}}{w_{1}+w_{2}}=\frac{4 \cdot 16.4+25 \cdot 16.1}{4+25}=16.1414 \quad(1 \text { point }) \\
\frac{1}{s_{L}^{2}}=\frac{1}{s_{1}^{2}}+\frac{1}{s_{2}^{2}}=w_{1}+w_{2}=4+25=29 \Rightarrow s_{L}=29^{-1 / 2}=0.1857=\Delta L \quad(2 \text { points })
\end{aligned}
$$

Correct notation: $L \pm \Delta L=16.1 \pm 0.2 \mathrm{~m}$. (1 point)
Exercise 4 (10 points total)
a) $\bar{R}=(1 / 6) \cdot(47.1+47.4+47.8+46.9+47.2+47.5)=47.3167 \Omega \approx 47.3 \Omega$. (2 points)
b) $s^{2}=\frac{1}{N-1} \sum_{i=1}^{6}\left(R_{i}-\bar{R}\right)^{2}$
$=\frac{1}{5}\left((-0.2167)^{2}+0.0833^{2}+0.4833^{2}+(-0.4167)^{2}+(-0.1167)^{2}+0.1833^{2}\right)$
$=0.1017 \Rightarrow \sigma=s=\sqrt{0.1017}=0.3189 \Omega \approx 0.3 \Omega$. (2 points)
c) $s_{m}=s / \sqrt{N}=0.3189 / \sqrt{6}=0.1302 \Omega \approx 0.2 \Omega$. (2 points)
d) N needs to be 9 times higher $(\sqrt{9}=3) ; 9 \times 6=54$, so $54-6=48$ extra measurements are needed. (2 points)
e) s_{m} is the best estimate for the standard error in \bar{R}. The probability of finding a result within $\pm s_{m}$ from \bar{R} is 68%. (2 points)

Exercise 5 (11 points total)

x	$y \pm \Delta y$	r
1.00	10 ± 2	-1
2.00	22 ± 2	1
3.00	32 ± 2	1
4.00	40 ± 2	-1

$$
\begin{gathered}
a=\frac{N \sum x_{i} y_{i}-\sum x_{i} \sum y_{i}}{N \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}, \\
(\Delta a)^{2}=\left(\frac{1}{\sum x_{i}^{2}-N \bar{x}^{2}}\right) \frac{\sum r_{i}^{2}}{N-2} \\
(\Delta b)^{2}=\left(\frac{1}{N}+\frac{\bar{x}^{2}}{\sum x_{i}^{2}-N \bar{x}^{2}}\right) \frac{\sum r_{i}^{2}}{N-2} .
\end{gathered}
$$

a) $N=4, \sum x_{i}=10, \sum y_{i}=104, \sum x_{i}^{2}=30, \sum x_{i} y_{i}=310$
$\Rightarrow a=(4 \cdot 310-10 \cdot 104) /\left(4 \cdot 30-\{10\}^{2}\right)=10$
and $\bar{x}=2.5, \bar{y}=26 \Rightarrow b=\bar{y}-a \bar{x}=1$. (2 points)
b) $\sum r_{i}^{2}=4 \Rightarrow(\Delta a)^{2}=\left(30-4 \cdot 2.5^{2}\right)^{-1}(4 /\{4-2\})=0.4$ $\Rightarrow \Delta a=0.63246 \approx 0.7$
and $(\Delta b)^{2}=\left(1 / 4+2.5^{2} /\left\{30-4 \cdot 2.5^{2}\right\}(4 /\{4-2\})=3\right.$
$\Rightarrow \Delta b=1.7321 \approx 2$. (2 points)
c) $\chi_{\text {obs }}^{2}=\sum\left\{r_{i}^{2} /\left(\Delta y_{i}\right)^{2}\right\}=4 \cdot(1 / 4)=1$. (3 points)
d) $\nu=N-2=2,10 \%$ level $\Rightarrow \chi_{\text {table }}^{2}=0.211,90 \%$ level $\Rightarrow \chi_{\text {table }}^{2}=4.604$. $\chi_{\text {obs }}^{2}$ is in between those two limits, so the linear fit is acceptable. (2 points)
e) Now $\Delta y=0.5 \Rightarrow \chi_{o b s}^{2}=\sum\left\{r_{i}^{2} /\left(\Delta y_{i}\right)^{2}\right\}=4 / 0.5^{2}=16$, which is outside the limits found in d), so in this case the linear fit is not acceptable. (2 points)

